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ABSTRACT

In this project we made a demonstration of generating 3D natural-
like plants models using L-system grammar with customized fea-
tured graphic interpreter.

Our works can be summarized as follows. Firstly, We extended
the growing principles to three-dimension and built a mesh model
generator that is capable of generating plants models meshes on
demand. Secondly we build our own OpenGL renderer for rendering
the generated models. Finally, we designed an interactive GUI to
view and manipulate the plant models in real time.

1 INTRODUCTION

Plants models are everywhere in a game scene, such as MineCraft[1]
(Figure 1), and Super Mario Bro’s wild natural-like environments.
However in such an environment a huge number of plants need
to be generated to satisfy the requirements that they are slightly
different from each other. Here the main challenge is that the task of
making a realistic and creditable environment normally takes a team
of professional designers several months, which is not affordable
in larger game design. Fortunately, a principle of Procedural Con-
tent Generation (also referred as PCG)[2] was introduced to game
design in 70’s. Designers can thus utilize predefined algorithms
to automatically generate large scale of models or environment
efficiently.

L-system[3] is one of those principles for procedural generation.
L-system (or Lindenmayer system) was initially brought by biolo-
gist Lindermayer when he attempted to modeling various growth
patterns of bacteria[4][5]. The recursive nature of L-system is fit
for modeling plants because plants have branch structures which
can be properly described by a fractal-like grammar system. Thus
using L-system aided plants models generator is widely accepted
by the computer graphic industrial[6].

We designed our own generating algorithm and show it in our in-
teractive GUI using OpenGL. To describe our work accurately, this
paper is organized as follows. First we make series of definitions in
Section 2. In Section 3, we present our 3D models generating algo-
rithms. After that detailed software features are shown in Section
4, where reader can get information about technical details such as
OpenGL and GUL Finally, in Section 5 we show the future works
needed to be done when we apply this to potential commercial use.

2 DEFINITIONS AND NOTATIONS

In this section we make several fundamental definitions. The core
spirit of L-system is recursively rewriting a string following certain
rules. These rules are referred as "Grammars" in the rest of this
paper. We give a formal definition of grammar to avoid potential
ambiguities.

Figure 1: MineCraft[1]’s wild scenes are generated using
PCG. One of the advantages is that the scenes are capable
of extending to a wider space efficiently. The game is thus
worth playing again by changing levels or quests and hence
offering new stories and impressions in each new session
while the game mechanism remains the same.

2.1 Grammar

Definition 2.1. A Grammar is a set of production rules for rewrit-
ing strings[6].

Here we denote a Grammar with G. Each element g, € G is a
replacing rule that replace a single symbol v with another symbol
u or another string A consisting several symbols during a string
rewriting process. A simple example works as follows:

Example 2.2. G={A — AB,B — b}
G
In a single rewrite process: AB — ABb

In the example above, when rewriting starts, we replace A with
string AB following the first rule of G. At the same time, the second
symbol in the original string AB, namely B is rewritten as b. So the
new string after such transformation is ABb.

So far we have introduced the concept of Grammar. More specif-
ically, Grammar can be further divided into two groups based on
whether the rules are determined for each symbol. For those deter-
ministic Grammars, each replaceable symbol maps to a unique rule.
However this is not the case for another group of Grammars, whose
rules are non-deterministic. A symbol may have more than one
rewriting rules, when programs incur such symbols, they choose to
execute one of the rules based on certain conditions. Although the
ambiguity of the latter Grammars set difficulties for us to predict
or reproduce the results, they provide us with more flexibility to
create various sentences

2.2 L-system

Generally speaking, L-systems are a class of grammars whose defin-
ing feature is parallel rewriting. By recursively rewriting the string,
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we create the self-similarity of a growing complicated system be-
tween its local and global structures. We make the following indis-
pensable definitions before the definition of L-system:

e Variables: denoted as V, is a set of symbols used in a string
that are being replace in every recursion level.

e Constants: denoted as S, is a set of symbols used in a string
that are always retained with no corresponding replacing
rules.

o Axiom: denoted as w, is the initial string from the beginning
of the growth.

o Rules: denoted as P, is a set of Grammars we defined above
such that for every symbol v € S, there is a rule g, € P
to replace v with a certain string A, where for each symbol
acAacS8| aeV holds true.

Now we can come to the definition of L-systems:

Definition 2.3. L-systems are four-element tuples consisting {7V,
S, w,P}. They start from an initial string . In each iteration, every
variable symbol s is rewritten based on rules P. It terminates when
certain conditions are satisfied.

We list a simple example to illustrate our definitions.

Table 1: Fibonacci example of L-system

variables | constants | axiom rules
A,B none A A— B,B— AB

Table 2: Fibonacci String in six iterations

n=0 A

n=1 B

n=2 AB

n=3 BAB

n=4 ABBAB

n=5 BABABBAB

n=6 ABBABBABABBAB

2.3 Graphic Interpreter

The story so far is that we have already discussed L-system. How-
ever, the essence of L-system is a string rewriting system. A set of
smart interpretation rules should be created for the purpose of gen-
erating models on demand. Intuitively, the idea is that the program
read the generated string from left to right. Let the symbols repre-
sent the direction of the next stroke. The program reads the string
while holding a "pen", draw a stroke to the next point following the
direction the current symbol represented. This method works suc-
cessfully in Sierpiriski Arrowhead Curve example[7]. Unfortunately,
the use of this method is only limited to linear drawing system,
where models are drawn in one stroke without rolling back. In a
more realistic case, for example a typical branched tree, we need a
more powerful way that allow us to come back to the stem when
we finished building a branch.
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Algorithm 1: The Rewrite Algorithm
Input :sentence
Output:newsentence

1 initialize an empty sentence: newsentence;

2 for symbol in sentence do

3 switch symbol do

4 case Aor|[or]orLdo

5 ‘ Append to newsentence with ;

6 end

7 case T do

8 if the current branch is long enough and with a
probability of p1 then

9 ‘ Append to newsentence with [T][T]...[T];

10 end

11 else if the current tree is high enough and with a
probability of po then

12 ‘ Append to newsentence with ALT;

13 end

14 else

15 ‘ Append to newsentence with AT;

16 end

17 end

18 end

19 end

2.3.1 Bracketed Sequential Reading. We let the program main-
tain a stack data structure when it is reading the string. A node
recording the current location and direction will be pushed into
the stack when it incurs a left bracket symbol "[". After a short
period at the time it incurs a right bracket symbol "]", it pops up
the stack and restore to the location and direction recorded in the
node. A more specific example will be shown in next section where
we present our algorithm for 3D modeling.

3 3-D MODELS GENERATOR

In this section we will go to details of our 3-D generator system.
The algorithms are inspired from ideas of J.Knulzen’s thesis[8] and
Viruchpintu’s thesis[9]. Specifically, in our project we focus on
generating tree models. This system comprises of two algorithms.
The first one is a sentences generator which accepts parameters
from users and make sentences with a non-deterministic L-system’s
rules. The second part is what we have discussed as a graphic inter-
preter. The function of the interpreter is to translate the sentences
that comprise symbols to a 3-D model mesh constructed by com-
bining several kinds of meta models. We will discuss the sentences
generator part first.

3.1 Sentences Generator

First of all we introduce the meaning of our symbols. For a growing
tree one of the most important components can be the the growing
branches. So here we use A to denote a piece of branch. To simulate
the growing process, an A has a specific physical length, we let
the branches grow by appending several As to the current branch.
Similarly, an L represents a "Leaf" in our system. A "Leaf" has its
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(a) Branch Meta Model (b) Leaf Meta Model

Figure 2: Meta Models

own physical properties such as length and width as well, but leaves
are not extended to bigger ones. Please note that both A and L are
Constants in grammar. On the contrary, T is the only Variable
that can be replaced in the rewriting process. T in essence is analogy
to growing points of plants where new cells are bifurcated from old
cells actively. A single T is rewritten by prepending the original T
with some As or L or even more Ts depending on the condition of
current branch. Besides, as mentioned in the previous section, we
have symbols [ and ] to facilitate our rewriting algorithm.

A tricky mechanism here is created to control bifurcating rules.
Three parameters are passed in, among which two are the thresholds—
branchheight and leafheight. When a branch is growing, we contin-
uously add As to the branch so the physical length keeps growing.
At the time it hits the threshold branchheight, the T’s replacing rule
significantly changes by allowing it to bifurcate with a certain prob-
ability specified ahead of time. The third parameter—branchnumber
determines the number of new T’ that the old T should be replaced
with. Similarly, when another threshold leafheight is hit, we allow
it to have a leaf on the branch also with a probability. The detailed
algorithm can be find in Algorithm 1.

3.2 Meta models

Even if with the help of L-system as blueprints, modeling a bifur-
cating plant is still difficult. To further simplify this problem, we
introduce the idea that we use meta models(Figure 2) to represent
branches and leaves. However, such meta models are not manu-
ally designed models. They are procedural generated on demand
by specifying height, width etc. In the next step we just naively
assemble these models using our graphic interpreter by putting
them together. In practice, the joint parts look smooth even if we
don’t do further processing. The possible reasons may rely on the
fact that branches are tall and thin, the intersection parts are too
minor to be seen with eyes. Besides, proper texture mapping with
tree barks can be cheating thus partially covers up the defects.

3.3 Building Tree models

In order to build a 3D model by an L-system sentence, we need
to interpret the sentence as branches and leaves with parameters.
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Algorithm 2: 3D Model Generation Algorithm
Input

:sentence, currentBottom, currentTop,
currentTopRadius, currentBottomRadius,
currentLength

Output: vertexVector, indexVector

1 initialize empty vectors: vertexVector, indexVector;

2 for symbol in sentence do

3 switch symbol do

4 case A do

5 M=computeTransMatrix(currentBottom,
currentTop);

6 vertexBuffer,indexBuffer

=genBranchMetaModel (currentTopRadius,
currentBottomRadius, currentLength);

pushback
7 vertexVector ———M - vertexBuffer;
. pushback |
8 indexVector «——————indexBuffer;
9 update currentBottom, currentTop,

currentTopRadius, currentBottomRadius,
currentLength by M, Length ratio, Radius Ratio;

10 end
1 case L do
12 M=computeTransMatrix(currentBottom,
currentTop);
13 vertexBuffer,indexBuffer
=genLeafMetaModel (currentLength);
pushback
14 vertexVector ———M - vertexBuffer;
i pushback |
15 indexVector «—————indexBuffer;
16 end
17 case [ do
18 randomly generate Vertical angle and

Horizontal angle;

19 M=computeFurcateTransMatrix(currentBottom,
currentTop, Vertical angle, Horizontal angle);

20 compute Shrinkage ratio by Vertical angle;

21 update currentBottom, currentTop,
currentTopRadius, currentBottomRadius,
currentLength by M, Shrinkage ratio;

22 3DModelGeneration(sentence.substring(symbol),
currentBottom, currentTop, currentTopRadius,
currentBottomRadius, currentLength);

23 end

21 case | do

25 restore currentBottom, currentTop,
currentTopRadius, currentBottomRadius,
currentLength;

26 end

27 end

28 end

Specifically, we translate A to branches, L to leaves, and [ to param-
eters which control how to generate child branches from a parent
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Algorithm 3: Compute Transformation Matrix

input :currentBottom, currentTop

output:X,,m,

orientation = currentTop- currentBottom;

01 = arccos(orientation.y / length(orientation));

[

N

©w

lengthXZ = length((orientation.x, orientation.z));
02 = lengthXZ == 0 ? 0 : arccos (orientation.z / lengthXZ);
if orientation.x < 0 then
| 0y =21 - 0y
7 end
8 Xwm = T(currentBottom) - Ry (62) - Ry (61);

'S

o

Algorithm 4: Compute Furcate Transformation Matrix

input :currentBottom, currentTop, verticalAngle,
horizontalAngle
output:X,,;,
1 generate 01 and 0 as Algorithm 3 does;
2 orientation = currentTop- currentBottom;
3 normalVector = (orientation.y, -orientation.x, 0);
4 Xyym = T(currentBottom) - Ryrientation(horizontalAngle) -
RnormalVector(VerticaIAngle) : Ry(92) : Rx(91)§

branch[9]. In addition, we use [ and ] to save and restore these
parameters. Before we build the modeling system, two additional
factors should be considered in order to make the tree look more
natural.

The first thing are the shapes of our meta models. A common ob-
servation is that the branches are thinner and shorter as the tree gets
taller. Therefore, we use a truncated cone with two hemispheres
to model a branch (Figure 2a). The rates at which the branches
become thinner and shorter is determined by length ratio and
radius ratio respectively. In order to render different kinds of
leaves, we build a leaf model as a rectangle panel (Figure 2b) and
render it into the shape of a leaf by mapping its texture to images
with transparent channels.

The second fact is that we observe that trunks of trees are more
likely to be thicker than side branches. In order to implement such
mechanism, we let those side branches whose have larger angles
with the their branches become thinner. The ratio of this angle to the
reciprocal of thickness of child branch is called the shrinkage rate.

Besides the above parameters, We list some other parameters
that control the tree’s growth.

e Length ratio: is the ratio of the length of a parent branch
to it of its child branches.

o Radius ratio: is the ratio of the top surface radius to the
base radius of a truncated cone.

e Vertical angle: is the angle between the child branch and
the parent branch.

o Horizontal angle: is the angle between the child branches
projected on the parent branch’s normal plane.

o Shrinkage rate: is the ratio of the thickness of the child
branch to it of the parent branch.
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Figure 4: Model Diagram

The algorithm for generating 3D models is shown in Algorithm 2.
When we encounter an A or an L, we need to generate a meta model
and transfer its vertices coordinates from its model space to world
space. The generation of the meta model require currentTopRadius,
currentBottomRadius, and currentLength. Two more parameters—
currentBottom and currentTop are needed in order to save the posi-
tion and orientation of current branch, which create transformation
matrices to move meta models to correct positions and orientations.
The process of calculating transformation matrices is shown in the
algorithm 3. Because the branches get thinner, we update currentTo-
pRadius, currentBottomRadius, and currentLength after generating a
branch.

When we encounter a [, which means a parent branch will furcate
to generate several child branches, we need to save the position and
the orientation of the growing branch and use randomly generated
Vertical angle and Horizontal angle which change the orientation
of child branches. Because the difference between currentTop and
currentBottom can be regarded as the orientation of branches. We
will use a transformation matrix to move currentTop and achieve the
goal of changing orientation. The process of calculating the matrices
is shown in the algorithm 4. In the algorithm 4, T(vector4) denotes
translating by vector vectors, Ryecrorg (anglec) denotes rotating
about the axis of vector vectorp by angle anglec. In addition, we
will restore them until we encounter a |.
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4 SOFTWARE IMPLEMENTS

Our system integrates OpenGL, ImGui, 3D model generator, and
L-system, which can generate and display trees in nature (Figure
3). Our system works as shown in Figure 4. Specifically, Sentence
Generator constructs sentences representing trees based on L-
system. Model Generator constructs tree models according to
the sentences generated by Sentence Generator and parameters
received from users. Rendering Engine renders the models gener-
ated by Sentence Generator and renders them differently based
on various user inputs. GUI accepts user inputs and passes parame-
ters to Rendering Engine and Model Generator.

OpenGL enables our Rendering Engine to efficiently imple-
ment coordinate transformations, lighting and shading, loading
image texture, anti-aliasing, and transparency.

Our GUI is based on ImGui, which accepts mouse and keyboard
inputs and generates various trees. It has GUI functions such as I/O
features, bark and leaf texture changing, user-customized lighting
and tree generating by user-defined parameters.

4.1 Features

Our procedural generating system contains a variety of textures of
bark and leaves that can be replaced to simulate trees more realisti-
cally. Texture browser (Figure 6) can help us to quickly replace the
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(a) Iterate 10 times (b) Iterate 20 times (c) Iterate 30 times

Figure 9: Tree with different iteration times

(a) 2 child branches (b) 3 child branches (c) 4 child branches

Figure 10: Tree with different child branch numbers

(a) Texture 1

(b) Texture 2

Figure 11: Tree with different textures

texture. We have built-in lights and custom lights to more clearly
show the trees in different lighting conditions (Figure 7). Moreover,
in order to generate various trees, we have a geometry modifier
(Figure 5) that allows the user to modify multiple parameters such
as the number of iterations of growth, max vertical angle and the
number of child branches when a parent branch furcates, etc.

We summarize the parameters that users can set by themselves
as follows.

o Iteration: how long the tree grows.
o Tree size: the thickness of the tree.
o Leaf height: how tall trees begin to grow leaves.
o Leaf density: the density of leaves.
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e Branch divergence: how many child branches when a par-

ent branch furcates.

Branch counter: the length of the branches.

Branch counter fluctuation: the probability of branching.

Branch tallness: the height of the tree.

Branch shrinkage: the extent to which the child branches

become thinner when a parent branch furcates.

e Branch max angle: the upper limit of the vertical angle
between the child branch and the parent branch.

e Branch angle turbulence: the degree of randomization of
the horizontal angle of the child branches.

e Random seed: the number used to initialize a pseudoran-
dom number generator.

The specific effects of changing part of the parameters would be
shown in next section. The user can get the L-system sentences
generated by the sentence generator through debug console (Figure
8).

4.2 Results

In this section, we show some trees with different parameters or
textures. For example, the number of iterations controls the time of
tree growth, Figure 9 shows trees with different iterations. We can
also control the number of child branches when the parent branch
are furcating. Figure 10 shows the result of trees with different child
branches. In addition, we can change the bark and leaf texture or
trees (Figure 11).

5 FUTURE WORKS

Several features can be extended in our project to improve the
degree of completion for the potential commercial use. Here we
list some of the features we could added due to the limited time for
this project.

¢ Shadow mapping: Shadow mapping[10] can be considered
for a more realistic scene like a forest.

e Bump mapping: Currently we could see specular light on
the tree’s body because the tree’s body is nearly round and
smooth where normals are perpendicular to the geometric
shape. To make it looks more natural where specular lights
are invisible and the barks are rough and wrinkled, bump
mapping[11] can be applied here by slightly turbulent each
normal on the surface.

e Animation: This feature is to give users an intuitive impres-
sion of how the models evolve during each iteration. Since
we rewrite the sentence in each iteration, we can simply
trace the evolution history by interpreting each sentence
in the history to a individual model. These models serve as
"snapshots" of the tree’s growth and form each frame in the
animation.

e Migration: The L-system tree has a very tiny file size, re-
gardless of the complexity of the model. If it can be applied
to commercial game engines, it will contribute greatly to
reducing file size of open world games.
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